NetForum uses cookies to ensure that we give you the best experience on our website. If you continue to use the site, we'll assume that you are happy to receive these cookies on the NetForum website. Read about our cookies.
NetForum Community
Learn. Share. Optimize.
Log in | Sign up now | Submit content | Contact
Go to similar content

Improving myocardium segmentation in cardiac CT angiography

Publication
Philips CT Clinical Science Philips Healthcare • USA

Bruns S, Wolterink JM, van Hamersvelt RW, Zreik M, Leiner T, Ivana Išgum.

* This article originally appeared in the September 2018 issue of arXiv.
Accurate segmentation of the left ventricle myocardium in cardiac CT angiography (CCTA) is essential for e.g. the assessment of myocardial perfusion. Automatic deep learning methods for segmentation in CCTA might suffer from differences in contrast-agent attenuation between training and test data due to non-standardized contrast administration protocols and varying cardiac output. We propose augmentation of the training data with virtual mono-energetic reconstructions from a spectral CT scanner which show different attenuation levels of the contrast agent. We compare this to an augmentation by linear scaling of all intensity values, and combine both types of augmentation. We train a 3D fully convolutional network (FCN) with 10 conventional CCTA images and corresponding virtual mono-energetic reconstructions acquired on a spectral CT scanner, and evaluate on 40 CCTA scans acquired on a conventional CT scanner. We show that training with data augmentation using virtual mono-energetic images improves upon training with only conventional images (Dice similarity coefficient (DSC) 0.895±0.039 vs. 0.846±0.125). In comparison, training with data augmentation using linear scaling improves the DSC to 0.890±0.039. Moreover, combining the results of both augmentation methods leads to a DSC of 0.901±0.036, showing that both augmentations lead to different local improvements of the segmentations. Our results indicate that virtual mono-energetic images improve the generalization of an FCN used for myocardium segmentation in CCTA images.


This content has been made possible by NetForum Community.
Share this on: Share your link in twitter Share your link in facebook Share your link on LinkedIn Print Rate this article: Log in to vote

 
Rating:
Votes:
0
Views:
65
Added:
Nov 16, 2018

Rate this:
Log in to vote
 

Publication
IQon Spectral CT
3D, Cardiac, coronary angiography, coronary arteries, left ventricle, MonoE, myocardial perfusion, spectral CT, Vascular
 

Clinical News
Best Practices
Case Studies
Publications and Abstracts
White Papers
Web seminars and Presentations
ExamCards
Protocols
Application Tips and FAQ
Training
Try an Application
Business News
Case Studies
White Papers
Web Seminars and Presentations
Utilization Services
Contributing Professionals
Contributing Institutions
Become a Contributor